Innovatieve 'nieuwe sanitatie' ontwikkelingen in 'North and 'South'

*+Grietje Zeeman, *+Katarzyna Kujawa-Roeleveld, #Brendo Meulman, @Lucia-Hernandez *WUR-ETE, +LeAF, @WETSUS, # DeSaH BV

Presentation Content

- Present sanitation in 'North' and 'South'
- Resources present in sanitation 'waste' related to world resource problems
- Different 'new sanitation' options
- Future challenges

Two sanitation approaches

Traditional→ wastewater as risky,
polluting stream↓↓↓Central, water based
collection & transport,
treatment and discharge

→ waste(water) as source of raw materials

Alternative collection, transport and recovery & reuse

Two sanitation approaches

<u>New</u>

→ waste(water) as source of raw materials

Alternative collection, transport and recovery & reuse

'North' countries

Complying with environmental, hygienic & comfort objectives;

Not complying with sustainability objectives!!

WAGENINGEN UNIVERSITY , Environmental Technology

'South' countries

Not complying with environmental, hygienic objectives ánd not complying with sustainability objectives !

Nairobi, Kenya 2004: Sixty per cent of the city's people live in slum areas. Photo : ©AFP / Getty Images / Marco Longa ; Gumisai Mutume (2004).

'South' countries

stashpocket.files.wordpress.com/2008/03/nairo...

WAGENINGEN UNIVERSITY Environmental Technology

Sanitation Challenges

Industrialized countries

- Sustainable sanitation
 - preconditions
 - Promotion of health
 - Similar comfort

Developing countries

- Promotion of health
 - preconditions
 - Sustainable sanitation
 - Improved comfort

What can we learn from each other??

Sanitation Challenges

Industrialized countries

- Sustainable sanitation
 - preconditions
 - Promotion of health
 - Similar comfort

Developing countries

- Promotion of health
 - preconditions
 - Sustainable sanitation
 - Improved comfort

What can we learn from each other??

C2C based Food production

wetsus

Waste(water) streams in the household

wetsus

Pollution load in black waste(water) & kitchen waste (K)

	Urine + Feces+ Kitchen waste (g/p/d)	% of total domestic ww + K
Ν	12.3 g	92
Р	1.6 g	80
K	3.9 g	84
COD	111 g	69

wetsus

World problems

- Phosphate is a finite resource (Cordell et al., 2009);
- Reactive Nitrogen increases yearly (Galloway et al., 2008)
- Fossil fuels are finite;

wetsus

Phosphate production (black water + kitchen waste) and artificial fertiliser use --- Worldwide

	in BW + K	Fertiliser use	% coverage
Phosphate	3.9*10 ⁶ (tons per year)	[#] 14.9*10 ⁶ (tons per year)	27
Nitrogen	*30.9*10 ⁶	##121*10 ⁶	25

World population: 6,911,750,810 people (http://www.census.gov/main/www/popclock.html) #Cordell, D., Drangert, J.-O., and White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19, 292-305.

wetsus

COD (black water + kitchen waste) and potential Energy production --- Worldwide

	in BW + K	*CH ₄	coverage
COD	**280*10 ⁶	69*10 ⁹	at last. 60%
	(tons per year)	(m ³ per year)	cooking

**World population: 6,911,750,810 people (http://www.census.gov/main/www/popclock.html) *anaerobic treatment;70% conversion

Environmental Technology

wetsus

'Dream situation'

Collection (toilet) and transport system

Determines for a great deal the treatment and recovery possibilities:

- No water use and separation of urine:
 - Composting toilets; —
- Flush (low) toilets (5-9 liters)
- Some water use and no urine separation:
 - Vacuum toilets; (1liter per flush);
- Some water use and urine separation:
 - Urine diverting systems;

Composting of feces; Separation of urine house on-site

Anaerobic treatment of black waste(water) house on-site

Composting of feces; Separation of urine house-on-site

Wendland et al. (2011). Experiences with urine diverting dry toilets (UDDTs) for households, schools and kindergarten in Eastern Europe, the Caucasus and Central Asia (EECCA). WECF report

WAGENINGEN UNIVERSITY

wetsus

Self-Made Urine-Diversion

WAGENINGEN UNIVERSITY Environmental Technology

School Sanitation Example Nizhyn, Ukraine

 WAGENINGEN UNIVERSITY

 Environmental Technology

wetsus

Urine-Fertilized Maize

WAGENINGEN UNIVERSITY Environmental Technology

Mobisan in Pook Se Bos, Informal settlement in SA

Urine diversion & Dehydration

WAGENINGEN UNIVERSITY Environmental Technology

wetsus

Anaerobic treatment of black waste(water) house on-site

Anaerobic treatment of black waste(water) in Tanzania; house on-site

Environmental Technology

Chinese dome digester house on-site

wetsus

Chinese dome digester in Pingyao

WAGENINGEN UNIVERSITYEnvironmental Technology

Chinese dome digester in Pingyao

WAGENINGEN UNIVERSITY Environmental Technology

wetsus

High density, urban situations (Slums)

Private toilets & Sewerage not feasible

Toilets blocks in high density urban areas.

The SPARC-style sanitation block in Kibera, Nairobi, managed by the community women

tting Associates

School Sanitation block in Dar es Salaam, Tanzania

Photographs Thobias Bigambo; A4A supported

WAGENINGEN UNIVERSITY Environmental Technology

wetsus

Collection (toilet) and transport system

Determines for a great deal the treatment and recovery possibilities:

- No water use and separation of urine:
 - Composting toilets;
- Flush (low) toilets (5-9 liters).
- Some water use and no urine separation:
 - Vacuum toilets; (1liter per flush);
- Some water use and urine separation:
 - Urine diverting systems;

'North' & 'South' countries

Disadvantages:

- Effluent infiltration
 - Groundwater pollution (N, P, pathogens)
- Methane not collected

not complying with sustainability objectives

Soil infiltration

wetsus

Septic tanks; urine diversion

wetsus

Letting Associates

Foundation

Septic tanks; small bore sewer & post treatment

Conventional septic tank

wetsus

UASB-Septic tanks (Lettinga et al, 1997)

• Improved COD removal

WAGENINGEN UNIVERSITY

wetsus

Collection (toilet) and transport system

Determines for a great deal the treatment and recovery possibilities:

- No water use and separation of urine:
 - Composting toilets;
 - Flush (low) toilets (5-9 liters)
- Some water use and no urine separation:
 - Vacuum toilets; (1liter per flush); _
- Some water use and urine separation:
 - Urine diverting systems;

Vacuum collection & transport use 1 liter for flushing

Producing 7l/p.d⁻¹ concentrated black water;

Saving 30-42 l/p.d⁻¹

Similar comfort as water based collection and transport

 WAGENINGEN UNIVERSITY

 Environmental Technology

DeSaR concept demonstrated for 32 houses in Sneek

WAGENINGEN UNIVERSITY Environmental Technology

NIOO building in Wageningen

desah

Collection (toilet) and transport system

Determines for a great deal the treatment and recovery possibilities:

- No water use and separation of urine:
 - Composting toilets;
 - Flush (low) toilets (5-9 liters)
- Some water use and no urine separation:

Vacuum toilets; (1liter per flush);

- Some water use and urine separation:
 - Urine diverting systems; -

wetsus

Separate Collection, Transport, treatment & reuse of urine

*Lienert & Larsen, (2010):

38 NoMix-projects in Switzerland, Sweden, The Netherlands, Germany, Austria, Luxembourg, Denmark (2700 respondents).

High acceptance;
No-Mix-toilets need further development;

*Lienert & Larsen, 2010. High Acceptance of Urine Source Separation in Seven European Countries: A Review; Environ. Sci. Technol. 44, 556–566

WAGENINGEN UNIVERSITY

Novaquatis; EAWAG Collection, storage, treatment and reuse of urine*

http://www.forumchriesb ach.eawag.ch/bilder.htm;

*Larsen, T. A., Lienert, J. (2007) Novaquatis final report. NoMix – A new approach to urban water management.Eawag, 8600 Duebendorf, Switzerland

WAGENINGEN UNIVERSITY Environmental Technology

Palsternackan Stockholm (1995); 51 appartemens, 160 people (urine separation)

6 months storage: Hygienic safe application

 WAGENINGEN UNIVERSITY

 Environmental Technology

wetsus

Urine treatment Saniphos (GMB)

Environmental Technology

Nepal's first Urine Bank in Siddhipur

http://www.urbwatsan.org.np/index.php?opti on=com_content&task=view&id=557&Itemi d=1

Environmental Technology

1.00 Rs. per liter urine

Perspective from the extreme ends

Sanitation is more than toilet systems and treatment technologies \rightarrow

social and technical chain of nutrient, water and energy flows

- householders
-

 - • • • • • •

• farmers applying nutrients, compost and water

WAGENINGEN UNIVERSITY Environmental Technology

wetsus

Perspective from the extreme ends

Sanitation concepts should connect to local needs, & expected demands for products (biogas, nutrients).

wetsus

Perspective from the extreme ends Points of concern/attention

- role of farmers as (proposed) users of nutrients is still limited
- success of i.e. UD systems depends on:
 - technology design // consumer acceptance
 - farmers' acceptance

→ Farmers should therefore be involved in any new sanitation project in a very early stage (Jönsson, (2008)

wetsus

Innovation management PROVIDE project WUR (Kenya, Tanzania & Uganda):

Development of the 'Modernized Mixtures Approach' Combining :

 low-cost, flexible, robust, decentralized technologies with available centralized infrastructure;

Integrating

 (eco)technological, economic, social and governance dimensions

Innovation management Safi Sana concept

- Development of standard units (lease or franchise) including 20 showers-s, 20 toilets en 1 kiosk for water.
- Sanitation products
 - » Water
 - » Fertilizers
 - » biogas

Conclusions

 Sanitation is a social & technical chain of nutrients, water and energy flows

Implementation of sanitation toilets blocks in high density urban areas combined with production of valuable products (biogas, fertilizer) is considered good sanitation practice

Conclusions

• Farmers should be involved in any new sanitation project in a very early stage (North & South);

• While a more engineering oriented approach dominated in the past, it becomes obvious that the socio-economic context has to be evenly considered.

Future challenges technological

- Further development of toilets
 - urine diversion
 - very low flush (collection & transport)

Production of hygienically safe products

Future challenges socio-economic

- For **industrialised countries**: to develop a strategy for a gradual (50 years) transition from conventional sanitation to 'New sanitation'
- To stimulate countries in transition to develop a strategy to directly adopt 'New Sanitation' (from a lag to a lead)
- For **developing counties**: to develop a strategy to amend existing infrastructure towards hygienically safe, resource oriented sanitation
- Worldwide: Establish harmonisation with agriculture demands

Thank you for your attention

Costs DeSaR 500 houses (1500 i.e)

- BW treatment: UASB->OLAND->struvite:
 325000 375000 euro
- GW treatment: high loaded AS followed by low loaded AS:
 - 150000 195000 euro
- Capital costs (5.5% interest)
 - -61.00 -75.000 euro per year
- Chemical, maintenance/energy/sludge treatment)
 - 16.000 18.000 euro per year

Costs per ie: 51 - 63 euro

WAGENINGEN UNIVERSITY Environmental Technology

DeSAR - Energy balance

Biogas production (BW, KW, GW)		10,5 m ³ CH4/p.y ⁻¹	374 MJ/p.y ⁻¹	131 MJ _{electric} /p.y⁻
Energy consumption	Vacuum transport	- ¹ 25 (kWh/p/y)		-90 (MJ/p/y)
	Kitchen waste grinders	-5 kWh/p/y		-18,0 MJ/p/y
	Post- treatment			-43 MJ/p/y
Energy saving	STP	24 kWh/p/y		86 MJ/p/y
	Conventional sewer	30 (kWh/p/y)		108 MJ/p/y
	⁵ Drinking water	0.5 kWh*m ³ _{produced}		26 MJ/p/y
Total				200 MJ/p/year

wetsus

Ion transport through the membrane

wetsus

Composition of household (waste)water

DeSAR pilot, Sneek, The Netherlands 32 houses - Methane and effluent nutrient recovery from AD of concentrated black water

Nutrients & CH ₄	Unit	UASB-ST 32 houses (without KW)	Theoretical (without KW)
Black water volume	L/p/d	6	7.5
CH ₄	L/p/d	13-19.5	15
N _{total}	(gN/p/d)	7.6	11
P _{total}	gP/p/d	0.63	1.3

Data are obtained from the demonstration project in Sneek (Elzinga et al., 2009) Kitchen waste is added only from one house.

wetsus

Recovery (g/p/d) of N and P at different locations in Sweden, calculated based on Jönsson (2001);direct reuse in agriculture

5 housing estates		
Inhabitants	8-160	
recovery (gN/p/d)	3.4-5.7	
recovery (gP/p/d)	0.27-0.49	

(wetsus

Algae production from digested separate collected BW and urine

 $^{*}CH_{1.78}O_{0.36}N_{0.12}P_{0.0075}$ (Duboc et al., 1999); Redfield ratio N:P of 16:1 P is the limiting nutrient.

wetsus

